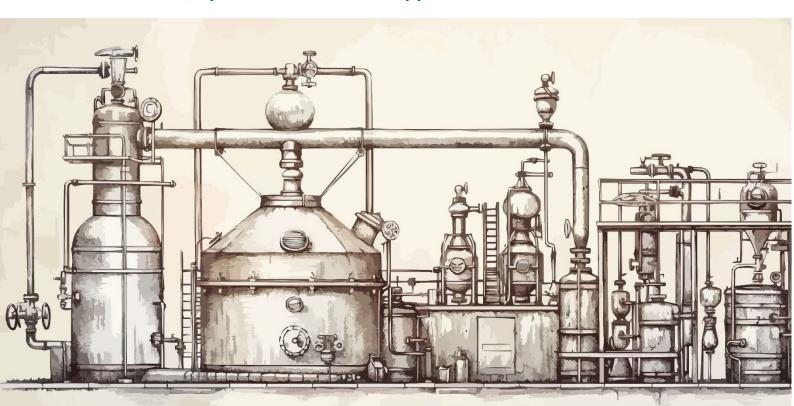
AgriLab



Bioingegneria di Processo

Fondamenti, Operazioni Unitarie e Applicazioni Industriali

Sommario

1. Introduzione alla bioingegneria di processo	4
1.1 Definizione, principi fondamentali e ambiti di applicazione	4
1.2 Differenze tra ingegneria chimica e bioingegneria	8
1.3 Bioprocessi e loro importanza nell'industria moderna	11
Esercizio 1.1: Simulazione della crescita microbica in un bioreattore batch	14
Esercizio 1.2: Analisi della produttività in un processo biotecnologico	18
2. Principi fondamentali di biotrasformazione	22
2.1 Concetti di biocatalisi e cinetiche biochimiche	23
2.2 Enzimi e microrganismi come catalizzatori biologici	24
2.3 Biotrasformazioni applicate alla produzione di biomolecole	27
Esercizio 2.1: Modello numerico per la cinetica enzimatica Michaelis-Menten	30
Esercizio 2.2: Calcolo del rendimento di una biotrasformazione enzimatica	33
Esercizio 2.3: Ottimizzazione di una reazione enzimatica in Python	37
3. Aspetti termodinamici e cinetici dei bioprocessi	41
Principi della termodinamica applicata ai sistemi biologici	42
3.1.1 Introduzione alla Termodinamica	42
3.1.2 Energia Libera e Spontaneità delle Reazioni Biologiche	42
3.1.3 Potenziale Chimico e Equilibrio nei Sistemi Biochimici	43
3.1.4 Termodinamica Applicata ai Bioprocessi	44
3.1.5 Bilanci Energetici nei Bioreattori	44
3.2 Bilanci di materia ed energia nei bioprocessi	44
3.2.1 Introduzione ai Bilanci di Materia ed Energia	44
3.2.2 Bilancio di Materia nei Bioprocessi	45
3.2.3 Bilancio di Energia nei Bioprocessi	47
3.3 Cinetiche di crescita microbica e produzione di metaboliti	48
3.3.1 Introduzione alle Cinetiche Microbiche	48
3.3.2 Modelli di Crescita Microbica	48
3.3.3 Produzione di Metaboliti: Modelli di Luedeking-Piret	49
3.3.4 Cinetiche di Consumo del Substrato	49
3.3.5 Influenza dei Fattori Ambientali sulla Crescita	50
Esercizio 3.1: Calcolo del rendimento energetico in un bioprocesso	50
Esercizio 3.2: Modellazione di una fermentazione batch con bilancio di massa ed energia	55
4. Progettazione e scale-up dei bioreattori	59

4.1	Tipologie di bioreattori: batch, fed-batch, continuo	60
4.2	Progettazione di un bioreattore: criteri di dimensionamento	62
Eserciz	io 4.1: Calcolo del rapporto superficie-volume per il scale-up	65
Eserciz	io 4.2: Modellazione del trasferimento di ossigeno in un bioreattore aerato	67
5. E	cologia microbica nei bioprocessi	72
5.1	Interazioni tra microrganismi in ambienti industriali	72
5.2	Cooperazione e antagonismo nei consorzi microbici	74
5.3	Strategie per il controllo e la stabilizzazione di consorzi	74
Eserciz	io 5.1: Simulazione della crescita di un consorzio microbico con Python	74
Eserciz	io 5.2: Modellazione della cooperazione metabolica con Flux Balance Analysis	78
Eserciz	io 5.3: Ottimizzazione della produzione di metaboliti in co-coltura	82
6. D	imensionamento unit operations	86
6.1	Distillazione nei Bioprocessi	86
6.1.1	Equilibrio liquido-vapore e cinetica della distillazione	86
6.1.2	Distillazione frazionata e azeotropica nei bioprocessi	88
Eserciz	io 6.1: Simulazione della distillazione di bioetanolo	91
Esercizio 6.2: Modellazione della separazione di acidi organici in colonna distillativa		94
6.2	Processi di Assorbimento nei Bioprocessi	98
6.2.1	Fondamenti dell'assorbimento gas-liquido	98
6.2.2	Progettazione di colonne ad assorbimento	99
6.2.3	Applicazioni nei bioprocessi: rimozione di CO₂ e gas tossici	100
Eserciz	io 6.3: Simulazione dell'assorbimento di CO₂ in colonna a riempimento	100
6.3	Processi di Adsorbimento nei Bioprocessi	105
6.3.1	Meccanismi di adsorbimento: fisico e chimico	105
6.3.2	Modelli di isoterma di adsorbimento: Langmuir e Freundlich	106
6.3.3	Applicazioni nei bioprocessi: purificazione di antibiotici e metaboliti bioattivi	106
Eserciz	io 6.4: Simulazione dell'adsorbimento di un metabolita bioattivo su carbone attivo	107
Eserciz	io 6.5: Modellazione della capacità di adsorbimento con isoterma di Langmuir	108
Bibliog	rafia	111